DOEALDoor

Residential Garage Door

SPRING INFORMATION

EZ-SET® ${ }^{\circledR}$ TORSION SPRINGS | TORSION SPRINGS | EXTENSION SPRINGS

\triangle

Improper Installation or Door Position Can Result in Serious Injury or Death. Read and understand all instructions before you begin work. Wear safety goggles. Unplug power door operator and remove the opener travel arm from the door FIRST. Do not remove more than one part at a time. Do not attempt to raise or lower the door without all components installed securely. This hardware is intended for residential garage doors only. Springs and attached hardware are under extreme tension at all times. All tension must be released SAFELY from the springs before any work is performed on the springs, door sections or hardware. If you do not completely understand the installation instructions or are unsure if the replacement component matches the part being replaced - contact a professional installer.

Torsion springs can be very dangerous if they are improperly installed or mishandled. DO NOT attempt to install them yourself unless 1) you have the proper tools and reasonable mechanical aptitude or experience and 2) you follow enclosed instructions very carefully. Professional installation is recommended.

EZ-SET® TORSION SPRINGS

SELECT BY SPRING DIMENSION
(1) Figure Wire Diameter

A. Measure 10 coils, write measurement using decimal. Example: 1-15/16" would be 1.92". See fraction converter below.
B. Move decimal point one place to the left for wire diameter. Example: $1.92^{\prime \prime}$ would be .192".

TAPE MEASURE FRACTION CONVERTER
Fractions are approximate

FRACTION		DECIMAL	FRACTION		DECIMAL
$1-25 / 32^{\prime \prime}$	$=$.177	$2-1 / 4^{\prime \prime}$	$=$.225
$1-15 / 16^{\prime \prime}$	$=$.192	$2-1 / 32^{\prime \prime}$	$=$.234
$2-1 / 6^{\prime \prime}$	$=$.207	$2-7 / 16^{\prime \prime}$	$=$.244
$2-3 / 16^{\prime \prime}$	$=$.219	$2-1 / 2^{\prime \prime}$	$=$.250

YOUR WIRE DIAMETER: \square
(2) Measure Inside Diameter

(3) Measure Coil Length

Measure coils only, NOT end cones
Example: 28"
(4) Determine Wind Direction

YOUR WIND DIRECTION:
(1)

WIRE DIAMETER

SPRING	DIAMETER
GOLD A	.177
GOLD B	.177
GOLD F	.177
ORANGE A	.192
ORANGE B	.192
ORANGE F	.207
YELLOW A	.207
YELLOW B	.207
YELLOW F	.219
WHITE A	.219
WHITE B	.225
WHITE F	.225
RED A	.235
RED B	.234
RED F	.234
BROWN A	.244
BROWN B	.244
BROWN F	.244
GREEN C	.250
GREEN D	.250
GREEN H	.250
GOLD C	
GOLD D	

INSIDE DIAMETER

$13 / 4{ }^{\prime \prime}$
$13 / 4{ }^{\prime \prime}$
$13 / 4{ }^{\prime \prime}$
$13 / 4 /$
$13 / 4 /$
$13 / 4{ }^{\prime \prime}$
$13 / 4$
$13 / 4$
$13 / 4$
$13 / 4$
$13 / 4$
$13 / 4{ }^{\prime \prime}$
$13 / 4 /$
$13 / 4{ }^{\prime \prime}$
$13 / 4{ }^{\prime \prime}$
$13 / 4$
$13 / 4{ }^{\prime \prime}$
$13 / 4$
$13 / 4{ }^{\prime \prime}$
$13 / 4$
$13 / 4$

SPRING (LEFT WOUND)	SPRING (RIGHT WOUND)	$\begin{aligned} & \text { DOOR } \\ & \text { HEIGHT } \end{aligned}$	$\begin{gathered} \text { DOOR } \\ \text { WEIGHT } \\ \text { (LBS.)* } \end{gathered}$	NON-INSULATED 25 GA. STEEL (M5ST)	$\begin{aligned} & \text { INSULATED } \\ & 24 \text { GA. STEEL } \\ & \text { (M4SV) } \end{aligned}$	3-LAYER STEEL DOORS (MDP38, MDP68, MDP38U, MDP68U)
GOLD F (LW)	-	7'	66-75			
GOLD B (LW)	-	7'	76-83			
GOLD A (LW)	-	7'	84-108	$8^{\prime}-9^{\prime} \times 7{ }^{\prime}$	$8{ }^{\prime} \times 7$	8' $\times 7$ 7' (MDP38)
ORANGE A (LW)	-	7'	109-133		9' 7^{\prime}	9' x7' (MDP38) - 8' x 7' (MDP68) - 8' x 7' (MDP38U)
YELLOW A (LW)	-	7'	134-155			$9^{\prime} \times 7{ }^{\prime}(M D P 68)-8^{\prime} \times 7{ }^{\prime}(M D P 68 U)-9^{\prime} \times 7{ }^{\prime}(M D P 38 U)$
WHITE A (LW)	-	$7{ }^{\prime}$	156-170	$16^{\prime} \times 7$		9' x 7' (MDP68U)
RED A (LW)	-	7'	171-190			
BROWN A (LW)	-	7'	191-211	$18{ }^{\prime} \times 7$	$16^{\prime} \times 7$	$16{ }^{\prime} \times 7$ ' (MDP38)
GREEN C (LW)	-	7'	212-215			
GOLD A (LW)	ORANGE A (RW)	7'	196-218			
ORANGE A (LW)	ORANGE A (RW)	7'	219-243			
ORANGE A (LW)	YELLOW A (RW)	7'	244-267		$18 \mathrm{x} \times 7$	16' \times 7' (MDP68) - 16' $\times 7$ 7 (MDP38U)
YELLOW A (LW)	YELLOW A (RW)	7'	268-289			18' $\times 7$ 7' (MDP38) - 18'x ${ }^{\prime}$ (MDP68) - 16' $\times 7$ 7' (MDP68U)
YELLOW A (LW)	WHITE A (RW)	7'	290-311			
WHITE A (LW)	WHITE A (RW)	7'	312-326			18' x 7' (MDP68U)
WHITE A (LW)	RED A (RW)	7'	327-341			18 x 7' (MDP38U)
RED A (LW)	RED A (RW)	7'	342-361			
RED A (LW)	BROWN A (RW)	7'	362-381			
BROWN A (LW)	BROWN A (RW)	7'	382-402			
BROWN A (LW)	GREEN C (RW)	7'	403-424			
GREEN C (LW)	GREEN C (RW)	$7{ }^{\prime}$	425-430			
GOLD F (LW)	-	8'	75-85			
GOLD B (LW)	-	8'	86-110	8' - 9' x 8'	8' x 8'	
ORANGE B (LW)	-	8'	111-134		9' 8^{8}	8' x 8' (MDP38)
YELLOW B (LW)	-	8'	135-158			$9^{\prime} \times 8^{\prime}(\mathrm{MDP} 38)-8^{\prime} \times 8^{\prime}\left(\mathrm{MDP68)}-8^{\prime} \times 8^{\prime}(\mathrm{MDP} 38 \mathrm{U})\right.$
WHITE B (LW)	-	8'	159-170			$9^{\prime} \times 8^{\prime}(M D P 68)-8^{\prime} \times 8^{\prime}(M D P 68 U)-9^{\prime} \times 8^{\prime}(M D P 38 U)$
RED B (LW)	-	8'	171-192	$16^{\prime} \times 8{ }^{\prime}$		9' x 8' (MDP68U)
BROWN B (LW)	-	8'	193-211			
GREEN D (LW)	-	8'	212-215			
GOLD B (LW)	ORANGE B (RW)	8'	198-223			
ORANGE B (LW)	ORANGE B (RW)	8'	224-246	$18^{\prime} \times 8^{\prime}$	$16^{\prime} \times 8^{\prime}$	16' x 8' (MDP38)
ORANGE B (LW)	YELLOW B (RW)	8'	247-269			
YELLOW B (LW)	YELLOW B (RW)	8'	270-293		$18^{\prime} \times 8^{\prime}$	$16^{\prime} \times 8^{\prime}$ (MDP68)
YELLOW B (LW)	WHITE B (RW)	8'	294-317			$16^{\prime} \times 88^{\prime}$ (MDP38U)
WHITE B (LW)	WHITE B (RW)	8'	318-330			$18^{\prime} \times 8^{\prime}(\mathrm{MDP} 38)-18^{\prime} \times 8^{\prime}\left(\mathrm{MDP68)}-16^{\prime} \times 8^{\prime}(\mathrm{MDP68U})\right.$
WHITE B (LW)	RED B (RW)	$8{ }^{\prime}$	331-342			
RED B (LW)	RED B (RW)	8'	343-363			$18^{\prime} \times 8{ }^{\prime}$ (MDP68U)
RED B (LW)	BROWN B (RW)	8'	364-385			18 x 8 ${ }^{\prime}$ (MDP38U)
BROWN B (LW)	BROWN B (RW)	8'	386-404			
BROWN B (LW)	GREEN D (RW)	8'	405-424			
GREEN D (LW)	GREEN D (RW)	8'	425-430			

(1) Figure Wire Diameter

| Measure 10 coils tight together
A. Measure 10 coils, write measurement using decimal. Example: 2-1/4" would be $2.25^{\prime \prime}$.
See fraction converter below.
B. Move decimal point one place to the left for wire diameter. Example: $2.25^{\prime \prime}$ would be .225 ".

TAPE MEASURE FRACTION CONVERTER

Fractions are approximate

FRACTION		DECIMAL	FRACTION		DECIMAL
$1-15 / 16^{\prime \prime}$	$=$.192	$2-5 / 8^{\prime \prime}$	$=$.262
$2-1 / 16^{\prime \prime}$	$=$.207	$2-3 / 4^{\prime \prime}$	$=$.275
$2-3 / 16^{\prime \prime}$	$=$.218	$2-27 / 32^{\prime \prime}$	$=$.283
$2-1 / 4^{4 \prime}$	$=$.225	$2-31 / 32^{\prime \prime}$	$=$.295
$2-11 / 32^{\prime \prime}$	$=$.234	$3-1 / 1 "^{\prime \prime}$	$=$.306
$2-7 / 16^{\prime \prime}$	$=$.243	$3-3 / 16^{\prime \prime}$	$=$.319
$2-1 / 2^{\prime \prime}$	$=$.250			

YOUR WIRE DIAMETER:

(2) Measure Inside Diameter

YOUR INSIDE
DIAMETER:

(3) Measure Coil Length

Measure coils only, NOT end cones Example: 26"

YOUR COIL LENGTH: \qquad
(4) Determine Wind Direction

YOUR WIND DIRECTION:

SPRING (LEFT WOUND)	SPRING (RIGHT WOUND)	$\begin{aligned} & \text { DOOR } \\ & \text { HEICHT } \end{aligned}$	$\begin{aligned} & \text { DOOR } \\ & \text { WEIGHT } \\ & \text { (LBS.)* } \end{aligned}$	NON-INSULATED 25 GA. STEEL (M5ST)	INSULATED 24 GA. STEEL (M4SV)	3-LAYER STEEL DOORS (MDP38, MDP68, MDP38U, MDP68U)
\#11 ORANGE (LW)	-	$7{ }^{\prime}$	52-56			
\#10 ORANGE (LW)	-	$7{ }^{\prime}$	57-61			
\#3 ORANGE (LW)	-	$7{ }^{\prime}$	62-68			
\#2 ORANGE (LW)	-	$7{ }^{\prime}$	69-77			
\#1 ORANGE (LW)	-	7'	78-84			
\#2 YELLOW (LW)	-	$7{ }^{\prime}$	85-93	$8^{\prime}-9^{\prime} \times 7^{\prime}$		
\#1 YELLOW (LW)	-	$7{ }^{\prime}$	94-105		$8^{\prime} \times 7^{\prime}$	
\#2 RED (LW)	-	$7{ }^{\prime}$	106-108			$8^{\prime} \times 7^{\prime}$ (MDP38)
\#1 WHITE (LW)	-	$7{ }^{\prime}$	109-118		$9^{\prime} \times 7^{\prime}$	$9^{\prime} \times 7^{\prime}$ (MDP38)
\#1 RED (LW)	-	$7{ }^{\prime}$	119-132			$8^{\prime} \times 7^{\prime}\left(\mathrm{MDP68)}-8^{\prime} \times 7^{\prime}\right.$ (MDP38U)
\#1 BROWN (LW)	-	$7{ }^{\prime}$	133-146			$9^{\prime} \times 7^{\prime}(M D P 68)-8^{\prime} \times 7^{\prime}(M D P 68 U)-9^{\prime} \times 7^{\prime}(M D P 38 U)$
\#1 GREEN (LW)	-	$7{ }^{\prime}$	147-157			
\#1 GOLD (LW)	-	$7{ }^{\prime}$	158-162			9' x 7' (MDP68U)
\#2 BLUE (LW)	-	$7{ }^{\prime}$	163-170	$16^{\prime} \times 7^{\prime}$		
\#1 YELLOW (LW)	\#1 ORANGE (RW)	$7{ }^{\prime}$	171-185			
\#1 WHITE (LW)	\#1 ORANGE (RW)	$7{ }^{\prime}$	186-196		$16^{\prime} \times 7^{\prime}$	
\#1 RED (LW)	\#1 ORANGE (RW)	$7{ }^{\prime}$	197-202			
\#1 YELLOW (LW)	\#1 WHITE (RW)	$7{ }^{\prime}$	203-209			$16^{\prime} \times 7^{\prime}$ (MDP38)
\#1 BROWN (LW)	\#1 ORANGE (RW)	$7{ }^{\prime}$	210-216	$18^{\prime} \times 7^{\prime}$		
\#1 WHITE (LW)	\#1 WHITE (RW)	$7{ }^{\prime}$	217-227			
\#1 RED (LW)	\#1 WHITE (RW)	$7{ }^{\prime}$	228-241			
\#1 BROWN (LW)	\#1 WHITE (RW)	$7{ }^{\prime}$	242-251		$18^{\prime} \times 7^{\prime}$	$16^{1} \times 7^{\prime}$ (MDP68)
\#1 RED (LW)	\#1 BROWN (RW)	$7{ }^{\prime}$	252-255			$16^{1} \times 7^{\prime}$ (MDP38U)
\#1 GREEN (LW)	\#1 WHITE (RW)	$7{ }^{\prime}$	256-265			
\#1 BROWN (LW)	\#1 BROWN (RW)	$7{ }^{\prime}$	266-276			$18^{\prime} \times 7^{\prime}$ (MDP38)
\#1 RED (LW) B	\#1 GOLD (RW)	$7{ }^{\prime}$	277-279			$16^{1} \times 7^{\prime}$ (MDP68U)
\#1 GREEN (LW)	\#1 BROWN (RW)	$7{ }^{\prime}$	280-289			$18^{\prime} \times 7^{\prime}$ (MDP68)
\#1 BROWN (LW)	\#1 GOLD (RW)	$7{ }^{\prime}$	290-299			
\#1 RED (LW) B	\#1 BLUE (RW)	$7{ }^{\prime}$	300-304			
\#1 GREEN (LW)	\#1 GOLD (RW)	$7{ }^{\prime}$	305-314			$18^{\prime} \times 7^{\prime}$ (MDP68U)
\#1 GOLD (LW)	\#1 GOLD (RW)	$7{ }^{\prime}$	315-327			$18^{\prime} \times 7^{\prime}(\mathrm{MDP38U})$
\#1 GREEN (LW)	\#1 BLUE (RW)	$7{ }^{\prime}$	328-337			
\#1 GOLD (LW)	\#1 BLUE (RW)	$7{ }^{\prime}$	338-349			
\#1 GREEN (LW)	\#4 ORANGE (RW)	$7{ }^{\prime}$	350-359			
\#1 GOLD (LW)	\#4 ORANGE (RW)	$7{ }^{\prime}$	360-383			
\#1 BLUE (LW)	\#4 ORANGE (RW)	$7{ }^{\prime}$	384-404			
\#4 ORANGE (LW)	\#4 ORANGE (RW)	$7{ }^{\prime}$	405-417			
\#9 ORANGE (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	418-429			
\#5 LT. BLUE (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	430-447			
\#9 WHITE (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	448-454			
\#4 LT. BLUE (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	455-465			
\#8 BROWN (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	466-468			
\#3 LT. BLUE (LW)	\#6 GREEN (RW)	$7{ }^{\prime}$	469-472			
\#11 ORANGE (LW)	-	8^{\prime}	58-63			
\#10 ORANGE (LW)	-	8^{\prime}	64-68			
\#3 ORANGE (LW)	-	8^{\prime}	69-76			
\#2 ORANGE (LW)	-	8^{\prime}	77-84			
\#3 YELLOW (LW)	-	$8{ }^{\prime}$	85-94			
\#2 YELLOW (LW)	-	8^{\prime}	95-97			
\#3 WHITE (LW)	-	8^{\prime}	98-108	$8^{\prime} \times 8^{\prime}$		
\#2 WHITE (LW)	-	8^{\prime}	109-117	$9^{\prime} \times 8^{\prime}$		
\#2 RED (LW)	-	8^{\prime}	118-131		$8^{\prime}-9^{\prime} \times 8^{\prime}$	$8^{\prime} \times 8^{\prime}$ (MDP38)
\#2 BROWN (LW)	-	8^{\prime}	132-142			$9^{\prime} \times 8^{\prime}$ (MDP38)
\#3 GOLD (LW)	-	8^{\prime}	143-146			
\#2 GREEN (LW)	-	$8{ }^{1}$	147-158			$8^{\prime} \times 8^{\prime}(\mathrm{MDP68})-8^{\prime} \times 8^{\prime}(\mathrm{MDP38U})$
\#2 GOLD (LW)	-	8^{\prime}	159-163			
\#3 BLUE (LW)	-	8^{\prime}	164-170			$9^{\prime} \times 8^{\prime}(M D P 68)-8^{\prime} \times 8^{\prime}(\mathrm{MDP68U})-9^{\prime} \times 8^{\prime}(\mathrm{MDP} 38 \mathrm{U})$
\#2 YELLOW (LW)	\#2 ORANGE (RW)	$8{ }^{\prime}$	171-184			
\#2 WHITE (LW)	\#2 ORANGE (RW)	$8{ }^{1}$	185-193	$16^{\prime} \times 8^{\prime}$		$9^{\prime} \times 8^{\prime}(\mathrm{MDP68U})$
\#2 RED (LW)	\#2 ORANGE (RW)	$8{ }^{\prime}$	194-202			
\#2 WHITE (LW)	\#2 YELLOW (RW)	$8{ }^{\prime}$	203-211			
\#2 RED (LW)	\#2 YELLOW (RW)	8^{\prime}	212-216			
\#2 WHITE (LW)	\#2 WHITE (RW)	8^{\prime}	217-225			
\#2 BROWN (LW)	\#2 YELLOW (RW)	8^{\prime}	226-234		$16^{\prime} \times 8^{\prime}$	
\#2 RED (LW)	\#2 RED (RW)	8^{1}	235-239	$18^{\prime} \times 8^{\prime}$		$16^{\prime} \times 8^{\prime}$ (MDP38)
\#2 BROWN (LW)	\#2 WHITE (RW)	8^{\prime}	240-248			
\#2 BROWN (LW)	\#2 RED (RW)	8^{\prime}	249-255			
\#2 GREEN (LW)	\#2 WHITE (RW)	$8{ }^{1}$	256-264			
\#2 GREEN (LW)	\#2 RED (RW)	$8{ }^{\prime}$	265-275			
\#2 GOLD (LW)	\#2 RED (RW)	$8{ }^{1}$	276-289		$18^{\prime} \times 8^{\prime}$	$16^{\prime} \times 8^{\prime}$ (MDP68)
\#2 BROWN (LW)	\#2 GOLD (RW)	$8{ }^{1}$	290-298			$16^{\prime} \times 8^{\prime}$ (MDP38U)
\#2 RED (LW)	\#2 BLUE (RW)	8^{\prime}	299-304			
\#2 GREEN (LW)	\#2 GOLD (RW)	8^{\prime}	305-316			
\#2 GOLD (LW)	\#2 GOLD (RW)	8^{\prime}	317-327			$18^{\prime} \times 8^{\prime}(\mathrm{MDP} 38)-18^{\prime} \times 8^{\prime}\left(\mathrm{MDP68)}-16^{\prime} \times 8^{\prime}(\mathrm{MDP68U})\right.$
\#2 GREEN (LW)	\#2 BLUE (RW)	8^{\prime}	328-338			
\#2 GOLD (LW)	\#2 BLUE (RW)	$8{ }^{\text {' }}$	339-351			
\#2 GREEN (LW)	\#5 ORANGE (RW)	$8{ }^{1}$	352-362			
\#2 GOLD (LW)	\#5 ORANGE (RW)	8^{\prime}	363-385			$18^{\prime} \times 8^{\prime}(\mathrm{MDP} 38 \mathrm{U})-18^{\prime} \times 8^{\prime}(\mathrm{MDP68U})$
\#2 BLUE (LW)	\#5 ORANGE (RW)	$8{ }^{1}$	386-408			
\#5 ORANGE (LW)	\#5 ORANGE (RW)	8^{\prime}	409-415			
\#8 BROWN (LW)	\#7 WHITE (RW)	8^{1}	416-418			
\#3 LT. BLUE (LW)	\#7 WHITE (RW)	$8{ }^{1}$	419-423			
\#8 WHITE (LW)	\#7 WHITE (RW)	$8{ }^{\prime}$	424-444			
\#7 WHITE (LW)	\#7 WHITE (RW)	8^{\prime}	445-465			

IDEALDoor
 STANDARD EXTENSION SPRINGS
 SELECT BY DOOR HEIGHT AND WEIGHT

Determine door height, weight and reference grid to select spring

See pages 7 and 8 for weighing instructions.
Note: Single (1 Pair) Springs - Spring \# (on one side of door) equals weight of door.
Double (2 Pairs) Springs - Spring \# for combined springs (on one side of door) equals weight of door.
Example: A door weighing 160 lbs. would use:
One (1) 160\# (\#2 BROWN) spring on both sides of door for a total of two (2) 160\# springs. - OR-
Two (2) 80\# (\#1 GOLD) springs on both sides of door for a total of four (4) 80\# springs.

INDUSTRY
STANDARD COLOR CODES

Gold

Yellow
 Red

Blue Light Blue \square

Be sure spring tension has been released. See following instructions.

Two people or more will be required to raise the door to allow the placement of a bathroom scale under the center of the door. Make sure to bend at the knees when lifting door and feet are clear of door travel. For door weighing more than the scale registers, two scales may be used by adding totals together.

Record weight and use it to determine proper spring from charts on previous pages.

EXTENSION SPRING

HOW TO REMOVE TENSION FROM REMAINING SPRINGS IN ORDER TO WEIGH DOOR

WARNING

Extension springs can be very dangerous and may cause serious injury or death if they are improperly installed or mishandled. DO NOT attempt to remove them yourself unless 1) you have the proper tools and reasonable mechanical aptitude or experience and 2) you follow these instructions very carefully. Serious injury could result if spring tension has not been released before other work begins.

If the door has two extension springs and only one is broken, always replace both springs. Replacement spring(s) must be identical to each other.
TOOLS NEEDED: (Oty. 2) C-clamps or locking pliers
STEP 1: Disconnect the garage door opener; carefully raise the door to fully open position.
Place C-clamps or locking pliers on both sides of the track below the bottom rollers to keep door from falling closed (IIlus. 1).
STEP 2: With the door in the fully open position the tension will be removed from the springs and the lift cable can be removed from the garage door bottom bracket button (Illus. 2). If your door is equipped with a safety containment cable, this also must be removed at this time from the track assembly (IIlus. 3).
STEP 3: Wood blocks should be placed under the door before closing to prevent finger from being trapped.
STEP 4: Remove the C-clamps from the track and carefully close the door.
A. WARNING Use two or more helpers to assist you in lowering the door. Some large doors might weigh as much as 500 pounds when the spring tension is removed. The weight of the door will not be apparent when you first begin to close the door. The door will feel progressively heavier as it is lowered until its full weight is realized about one foot from the floor. To avoid injury, keep hands and fingers clear of section joints, track, and other door parts while the door is closing.
STEP 5: Proceed to weigh the door.

Illus. 1

Illus. 2

Illus. 3

how to remove tension from remaining springs in order to welgh door

WARNING
Torsion springs can be very dangerous and may cause serious injury or death if they are improperly installed or mishandled. DO NOT attempt to install them yourself unless 1) you have the proper tools, reasonable mechanical aptitude and experience, and upper arm strength, and 2) you follow these instructions very carefully. Professional installation is recommended. Do not attempt to remove torsion spring tension if the wood mounting pad connecting the bracket to the center of the springs is split or rotted, or if the fasteners at this point are loose or missing.
These instructions apply only for the purpose of removing tension from torsion springs (springs mounted to the front header of the garage). Use only torsion spring winding bars for removing and adjusting standard torsion spring(s). DO NOT USE ANY OTHER TYPE OF TOOL FOR WINDING OR UNWINDING STANDARD TORSION SPRING(S). If the door has two torsion springs and only one is broken, always replace both springs.
TOOLS NEEDED: Adjustable wrench or 3/8" open end wrench
C-clamp or locking pliers
Two solid steel winding bars (available for sale at Menards)
STEP 1: Disconnect the garage door opener; lock the door securely in the down position using the door lock, C-clamp or locking pliers placed directly above a roller. This must be done to prevent the door from prematurely opening which could cause injury.

STEP 2: If the door has only one spring and it is broken, proceed to weigh door. If there are two springs, the remaining unbroken spring must be unwound and replaced. Proceed with Steps 3 through 6.
STEP 3: Remove all tension COMPLETELY from remaining torsion spring. Use a sturdy ladder and stand to the side of the winding bars and insert one winding bar as shown in Illus. 1. Winding bars MUST always be inserted the full depth of the holes in the winding cone and supported (be prepared to handle a large force) before any set screws on the spring winding cones are loosened. Positioning your hand near the end of the winding bar, push up on the winding bar to allow the second winding bar to be inserted, then slowly allow the second winding bar to rest against the back of the door, as shown in Illus. 2. Watch out that your fingers do not get pinched between the winding bar and back of the door or that the winding bar does not hit any window glass in the top section. If you cannot push the first winding bar up or feel uncomfortable with the force on the bar, stop, and contact a qualified door service professional.

STEP 4: Loosen the two set screws on the spring winding cone while firmly holding the lower winding bar and making sure that the lower winding bar is against the back of the door. When set screws are loose, full spring tension will be on the lower winding bar. See Illus. 3.
STEP 5: Push up on the upper winding bar slightly and remove the lower winding bar while holding tight on the upper winding bar. Allow the spring and upper winding bar to slowly rotate downward so that the upper bar rests against the back of the door. This decreases the tension on the spring in $1 / 4$ turn increments. See Illus. 4.
STEP 6: Repeat this process of inserting a winding bar fully in the upper hole position, push up slightly, removing the lower winding bar and letting the tension slowly rotate the winding bar until it rests against the back of the door. Repeat this process until all tension is removed from the torsion spring. There should be no tension on the cables, and the shaft should rotate freely. Proceed to weigh the door.

EZ-SET® TORSION SPRING

HOW TO REMOVE TENSION FROM REMAINING SPRINGS IN ORDER TO WEIGH DOOR

Torsion springs can be very dangerous and may cause serious injury or death if they are improperly installed or mishandled. DO NOT attempt to install them yourself unless 1) you have the proper tools and reasonable mechanical aptitude or experience and 2) you follow these instructions very carefully.
These instructions apply only for the purpose of removing tension from residential EZ-SET ${ }^{\circledR}$ torsion spring configurations with standard radius (springs mounted to the front header of the garage). If the door has two EZ-SET ${ }^{\oplus}$ torsion springs and only one is broken, always replace both springs. Replacement spring(s) must be identical in wire diameter, coil inside diameter, overall length and/or be matched for the door height (number of turns) and door springing weight.

TOOLS NEEDED: $3 / 8^{\prime \prime}$ medium duty reversible drill
$1 / 4^{\prime \prime}$ insert bit or $7 / 16^{\prime \prime}$ socket wrench
C-clamp or locking pliers
STEP 1: Disconnect the garage door opener, lock the door securely in the DOWN position using the door lock, C-clamp or locking pliers placed directly above a roller. This must be done to prevent the door from prematurely opening which could cause injury.
STEP 2: If the door has only one spring and it is broken, proceed to weigh door.

STEP 3: If there are two springs, the remaining unbroken spring must be unwound and replaced. Remove all tension COMPLETELY from the torsion spring. DO NOT loosen any set screws on the spring winding cones. Insert the $1 / 4^{\prime \prime}$ insert bit in the drill and engage the bit or $7 / 16^{\prime \prime}$ socket wrench on the drive shaft of the winding unit and rotate the drive shaft counterclockwise to remove tension from the spring (Illus. 1). NOTE: High drill RPMs may cause lubricant to come out of the winding unit. All tension in the spring is removed when the line (or description) on the spring is in a straight line. There should be no tension on the torsion cables, and shaft should rotate freely. Proceed to weigh the door.

